Quality functions in community detection
نویسنده
چکیده
Community structure represents the local organization of complex networks and the single most important feature to extract functional relationships between nodes. In the last years, the problem of community detection has been reformulated in terms of the optimization of a function, the Newman-Girvan modularity, that is supposed to express the quality of the partitions of a network into communities. Starting from a recent critical survey on modularity optimization, pointing out the existence of a resolution limit that poses severe limits to its applicability, we discuss the general issue of the use of quality functions in community detection. Our main conclusion is that quality functions are useful to compare partitions with the same number of modules, whereas the comparison of partitions with different numbers of modules is not straightforward and may lead to ambiguities.
منابع مشابه
A Multiagent Reinforcement Learning algorithm to solve the Community Detection Problem
Community detection is a challenging optimization problem that consists of searching for communities that belong to a network under the assumption that the nodes of the same community share properties that enable the detection of new characteristics or functional relationships in the network. Although there are many algorithms developed for community detection, most of them are unsuitable when ...
متن کاملOn the Evaluation Potential of Quality Functions in Community Detection for Different Contexts
Due to nowadays networks’ sizes, the evaluation of a community detection algorithm can only be done using quality functions. These functions measure different networks/graphs structural properties, each of them corresponding to a different definition of a community. Since there exists many definitions for a community, choosing a quality function may be a difficult task, even if the networks’ st...
متن کاملFuzzy Community detection based on grouping and overlapping functions
One of the main challenges of fuzzy community detection problems is to be able to measure the quality of a fuzzy partition. In this paper, we present an alternative way of measure the quality of a fuzzy community detection output based on n-dimensional grouping and overlapping functions that generalize the classical modularity for crisp community detection problems and also for crisp overlappin...
متن کاملAn Optimized Firefly Algorithm based on Cellular Learning Automata for Community Detection in Social Networks
The structure of the community is one of the important features of social networks. A community is a sub graph which nodes have a lot of connections to nodes of inside the community and have very few connections to nodes of outside the community. The objective of community detection is to separate groups or communities that are linked more closely. In fact, community detection is the clustering...
متن کاملA new modularity measure for Fuzzy Community detection problems based on overlap and grouping functions
One of the main challenges of fuzzy community detection problems is to be able to measure the quality of a fuzzy partition. In this paper, we present an alternative way of measuring the quality of a fuzzy community detection output based on n-dimensional grouping and overlap functions. Moreover, the proposed modularity measure generalizes the classical Girvan-Newman (GN) modularity for crisp co...
متن کامل